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ABSTRACT 

Euclidean geometry provides an opportunity for learners to learn 

argumentation and develop inductive and deductive reasoning. 

Despite the significance of Euclidean geometry for developing 

these skills, learner performance in mathematics, particularly 

geometry, remains a concern in many countries. Thus, the current 

study examined the nature of learners’ errors in Euclidean 

geometry problem-solving, particularly regarding the theorem for 

angle at the centre and its applications. Van Heile’s theory of 

geometric thinking and teacher knowledge of error analysis were 

used as conceptual frameworks to make sense of the nature of 

learners’ errors and misconceptions. Using a participatory action 

research approach, the study was operationalised by five 

mathematics teachers from four secondary schools in Motheo 

district in the Free State Province of South Africa and three 

academics from two local universities. The study analysed 50 

sampled midyear examination scripts of Grade 12 learners from 

four schools. The findings of this study revealed that most learner 

errors resulted from concepts on Van Heile’s operating Levels 0 

and 1, while the questions mainly required Level 3 thinking. The 

study recommends that teachers determine their learners’ level 

of geometric thinking and integrate this knowledge in their lesson 

preparations and material development.   

KEYWORDS 

Euclidean geometry; geometry; geometric thinking; errors; Van 

Heile`s theory. 
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INTRODUCTION 

Euclidean geometry is regarded as a critical secondary-school mathematics topic that provides 

an opportunity for learners to acquire argumentation skills and develop inductive and deductive 

reasoning (Fujita et al., 2010). However, learner performance in mathematics, particularly 

geometry, remains a concern in many countries. The study on learners’ performance in 

geometry, found that Grade 8 and 9 learners in Japan experienced challenges when constructing 

geometry proofs (Fujita et al., 2010). Part of the problem is the development in learners of an 

adequate understanding of geometry concepts, and the development of geometric reasoning 

(Ali et al.,2014).Whilst there have been attempts to study learners’ errors in mathematics, 

literature suggests a conceptual shift in attitudes about learner errors and misconceptions, from 

being considered in a negative light, as difficulties learners face when solving mathematics 

problems, to being understood as providing opportunities for teachers to understand how 

learners think and conceptualise mathematics content (Ali et al., 2014; Borasi, 1986).  As Van 

Dijk (2006) argues, it is through text and talk that we can gain access to the minds (thinking) of 

social actors; thus, in the same vein, learners’ errors and misconceptions act as an interface to 

learners’ thinking in relation to geometry concepts, which teachers could use as resources for 

understanding learners’ thinking.  

While agreeing with the forgoing conception of learners’ errors, Brodie (2013) argues 

that learners’ errors should not be seen as problems that should be avoided but, instead, as 

opportunities for teaching and learning. In her work, which was a data-informed practice 

improvement project, Brodie (2013) focused on ways teachers can learn to work with learners’ 

errors, and teachers’ views of learners’ errors. The body of knowledge relating to learners’ 

errors, with a special focus on teacher knowledge, such as the type of error a teacher chooses 

to deal with, and the way the errors are dealt with have been studied (Gardee, 2015; Sapire et 

al., 2016). 

Despite positive evidence that it is possible to enhance teacher knowledge using 

learners’ errors, including that provided by the studies referred to above, and others, little is 

known about learners’ geometric thinking when they make errors, or their misconceptions 

when they attempt to solve Euclidean geometry problems (Brodie, 2013). This kind of 

information is important, because it provides insight into learners’ thinking that lead to making 

errors, and the possible causes of errors, which could, in turn, improve teachers’ knowledge and 

help them develop appropriate corrective measures for teaching and learning Euclidean 

geometry (Gardee, 2015).  One critical aspect of teacher knowledge for teaching mathematics 

is teachers’ ability to analyse learners’ incorrect solutions and determine what could have 

caused this erroneous thinking, with the intention of developing appropriate corrective 

measures (Ball et al., 2008). The focus of the current paper is on analyse learners ’errors and 

misconception when solving Euclidean geometry problems. The study examined the nature of 

learners’ errors in Euclidean geometry problem-solving, particularly regarding the theorem for 

angle at the centre and its applications. 
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Literature review and conceptual framework 

Conceptualisation of learners’ errors and misconceptions 

The study of learners’ errors is nothing new, and it represents a growing body of knowledge. 

Literature suggests that there are several reasons why learners make errors when they solve 

mathematics problems. The work of Olivier (1989) helps us to understand that different 

theoretical lenses influence the way we understand learners’ errors. Olivier (1989) provides 

evidence for his contention, by showing how behaviourist and constructivist perspectives, 

respectively, would conceptualise learners’ errors in different ways. He argues that, from a 

behaviourist viewpoint, learners’ errors and misconceptions are not important; whilst the 

constructivist perspective postulates that current understanding influences new learning. Thus, 

teachers’ understanding of learners’ errors and/or misconceptions is important for ensuring 

better learning in the future.  

As part of the early work in this body of knowledge, particularly in South Africa, Olivier 

(1989) argues that we should distinguish between slips, errors, and misconceptions. Herholdt 

and Sapire (2014) who agree with Olivier (2010) and who draw on Ketterlin-Geller and Yovanoff 

(2009), state clearly that, “slips are random errors in declarative or procedural knowledge, which 

do not indicate systematic misconceptions or conceptual problems” (p. 23). Thus, studying slips 

may be less helpful for pedagogical reasons because Olivier (2010) explains that slips are made 

by both experts and novices, and they are corrected spontaneously. Whilst slips are sporadic, 

errors are more systematic (Gardee, 2015) and deterministic, and literature suggests that they 

are not always context bound. Nesher (1987) whilst in agreement with forgoing conception of 

errors, creates a connection between errors and misconceptions, and claims that errors do not 

occur randomly, but have their roots in erroneous principles. Nesher (1987) argues, further, that 

these erroneous principles, which the author terms misconceptions, can explain not only one, 

but a whole cluster of errors.  

Van Hiele’s theory of geometric thinking  

To gain a conceptual understanding of learners’ errors, this paper draws on the work of Dina 

van Hiele and her husband, Pierre Marie van Hiele, who, in 1984, proposed a theory of 

geometric thinking (Fuys, 1984). It is generally accepted that the Van Hieles’ description of 

geometric thinking provides the best explanation for the way learners think when they solve 

geometry problems. This theory posits that there are five levels of geometric thinking, which 

are presented in Table 1. 

Level 0, called recognition or visualisation, refers to learners’ reasoning based on pictorial 

representation of geometric shapes. Thus, when their thinking is on Level 0, learners disregard 

geometric properties; their reasoning regarding the differences or similarities between two 

shapes is based on the shapes’ pictorial representation (Howse & Howse, 2015).  According to 

Van der Sandt and Nieuwoudt (2005) learners at Level 0 judge geometric figures by appearance 

alone. Level 1 of Van Hiele’s theory of geometric thinking is called analysis or description. At this 

level, the theory postulates, learners’ reasoning about geometric figures is based on describing 
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the figure by its properties (Fuys, 1984). For instance, two geometric figures are similar or 

different based on their properties, however, the properties of each figure are still seen to be 

independent (Van Hiele, 1999, Vojkuvkova & Haviger, 2013). At Level 2, ordering or informal 

deduction, learners recognise relationships between the properties without constraints of 

pictorial representation. Furthermore, the learner applies logical reasoning using properties of 

a shape, though not carefully and without reference to sufficient conditions (Fuys, 1984). The 

third level is deduction, at which learners’ reason logically by ordering the properties of 

geometric concepts and using their definitions to determine sufficient and insufficient 

conditions for the concept to be true (Burger & Shaughnessy, 1986). It is at deduction level that 

learners’ reason formally by constructing geometry proofs with a series of logical, deductive 

mathematical statements (Mayberry, 1983). At the fourth level, which signifies rigor, learners 

are expected to give reasons beyond the deductive series of properties of geometric shapes, 

and progress to reasoning with deductive axiomatic systematics for geometry, by exploring their 

similarities, relationships, and differences.  

Table 1 

Van Hiele’s description of geometric thinking 

Level Name of level Description 

0 Recognition/Visualisation 
Judgement of geometric figure is by 

appearance only 

1 Analysis/Description 
Properties are recognised but not ordered 

logically 

2 
Ordering/Informal 

Deduction 
Properties are ordered logically 

3 Deduction 
Properties are used to make assumptions, 

which can be proved logically to be true 

4 Rigor 

Deductive axiomatic systems are used to 

reason logically than just making use of 

properties of geometric shapes 

 

Related literature on geometry and Van Hiele’s theory of geometric thinking 

That geometry forms part of school curricula is nothing new. It helps learners to develop spatial 

ability (Battista et al., 1982). Geometry is, in fact, one of the basic mathematics skills that is 

applied in other subjects too, such as engineering drawing (Abdullah & Zakaria, 2013). Literature 

suggests that geometry helps learners develop and improve their logical reasoning and 

argumentation; thus, to develop learners’ logical and deductive reasoning through geometry 

problem solving, consideration of the levels of Van Hiele’s geometric thinking is critical when 

compiling lessons (Battista et al., 1982).  
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The critical nature of geometric thinking is corroborated by the results of a study by 

Abdullah and Zakaria (2013) on assessment of learners’ levels of geometric thinking in 

transformation geometry. They found that, before their experiment, both the control and 

treatment groups of their quasi-experiment exhibited low acquisition of levels of Level 2 

thinking, and no acquisition of deductive reasoning. Low acquisition of geometric thinking skills 

confirms the argument that part of the problem is that learners have only partial understanding 

of constructing mathematics proof (Imamoglu & Togrol, 2015).  

This partial understanding is, arguably, noticeable at a lower level of competency 

regarding deductive reasoning, which is Van Hiele’s Level 3. Jones (2000) points to evidence that 

learners operating at the lower levels of Van Hiele’s geometric thinking (Levels 0, 1, 2) is 

traceable to classroom practices, where learners experience deductive reasoning as being too 

difficult, particularly in geometry. Mejia-Ramos et al.  (2012) building on the model of Yang and 

Lin (2008) argue that, when assessing learners’ comprehension of a proof, another criterium 

that learners must demonstrate, in addition to meaning making, logical status and logical 

chaining of its statement, is high-level ideas of the proof, its main components, the methods 

employed make an argument and ways their proofs can be applied to specific examples.  

METHODOLOGY 

A participatory action research approach  

This study employed participatory action research (PAR) as an approach to operationalise the 

study’s objectives. The origins of PAR as a research approach can be traced to 1944 and the 

work of Kurt Lewin, who is regarded as the father of action research (Gillis & Jackson, 2002).  

Lewin subscribes to the philosophy that people are more motivated to work if they are involved 

in decision-making processes (McNiff & Whitehead, 2011).  Central to PAR is its democratic 

nature, which means there is space for all participants – all are equally important to and worthy 

of driving the process of research (MacDonald 2012).  Thus, the current study reports on the 

engagement of five mathematics teachers and a university mathematics teacher educator, and 

their analysis of learners’ errors when solving Euclidean geometry problems. The goals of PAR 

include identifying changes of immediate benefit to research participants, investigating their 

social problems and finding ways to resolve these problems. Thus, PAR created an opportunity 

for a dual aim to be pursued through this study. The first aim related to teachers, who were 

required to develop mandatory subject improvement plans, which would serve as a diagnostic 

tool to identify the errors learners make on a particular assessment task. Once errors had been 

identified, teachers had to determine a possible cause for each error, to develop intervention 

mechanisms to improve learner performance. The researcher’s role in the team effort in pursuit 

of this aim, was to contribute research knowledge and skills, such as drawing on literature to 

provide a more comprehensive description of learners’ errors, beyond everyday knowledge. 

However, it was equally important that systematic knowledge of literature contributed to 

addressing everyday challenges that teachers face in the teaching of Euclidean geometry. 
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Secondly, the researcher’s aim was to contribute to the body of knowledge on learners’ errors. 

In so doing, the researcher had to elevate the level of analysis, so that it was more rigorous and 

systematic, and synthesise theory and practice.  

The likelihood of achieving the goals that had been identified was vested in a unique 

approach to research, which is democratic in nature and values everyone’s voice. The critical 

vision of PAR helps us to understand that power is always with us; thus, what matters is that it 

is used positively to open spaces for other voices in the process of research. PAR further enables 

me, as a researcher, to understand the object of study, not only considering scholarly literature, 

but equally importantly, from the perspective of those people who are experiencing the 

problem under investigation. My use of the phrase “equally importantly”’ is carefully delimited 

to Habermas’ theory of communicative action. Huttunen and Heikkinen (1998) explain that 

communicative action, 

“Means interpersonal communication which is orientated towards mutual 

understanding and in which other participants are treated as genuine persons, not as objects of 

manipulation. Actors do not primarily aim at their own success but want to harmonise their 

action plans with the other participants” (p. 311). 

Thus, by harmonising our action, the most compelling and logical argument explaining 

possible learner errors is accepted. Furthermore, the communicative rationale is reflective and 

open for dialogue. Using PAR in scholarly work has caught the interest of many scholars over 

the years; for instance, Mhina (2009) used PAR to find solutions for the problems experienced 

by women of Maruku village in Tanzania regarding their inability to access and control 

agricultural land. Udas (1998) helps us to understand that the value of PAR as an approach lies 

in its methodology, that is, teachers are not objects of research, but participate in research to 

understand learners’ errors better, and to determine what they could do to develop corrective 

mechanisms.   

Participant researchers and reasons for their inclusion  

The study was operationalised by five mathematics teachers from four secondary schools in 

Motheo education district in the Free State province of South Africa, and one academic from a 

local university. Two teachers, aged 34 and 45, had 11- and 15-years’ experience respectively 

teaching Grade 12 mathematics. The other three teachers were aged 31, 28 and 43 and had 

three, four- and 10-years’ experience of teaching Grade 12 mathematics respectively. Lastly, the 

academic had been a mathematics teacher educator for four years and had taught Grade 12 

mathematics for six years. 

When carrying out a PAR study, the success of its approach to research lies in its quest 

to work with the participants, who become part of research to improve their lives (Mhina, 2009).  

For instance, the reason for including teachers in this study was to address the problem of 

learners’ poor performance in Grade 12 final examinations. As a result of learners’ poor 

performance, the Department of Basic Education (DBE) had introduced Act 31 of 2007, which 

requires schools to submit subject improvement plans to the heads of Education in the 
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respective provinces (DBE, 2011). Thus, the participating schools had been classified as 

underperforming schools by the DBE. The schools invited the local university to help them 

develop and implement subject improvement plans. The schools’ participation in the research 

process created an opportunity to examine learners’ errors and misconceptions and their 

possible causes and developing appropriate corrective mechanisms. 

Data generation and analysis  

The sources of data were learners’ scripts, a total number of 50 from four schools. The learners’ 

scripts were selected randomly, and each script was analysed by all co-researchers, who then 

shared their notes during a discussion. The data were categorised and grouped according to the 

learners’ high-level ideas (Mejia-Ramos et al., 2012), which refer to main argument from which 

all the preceding logical reasoning flowed. For each main argument, percentage frequencies are 

presented to account for all the data. Furthermore, the themes were generated using the 

conceptual framework of Van Hiele’s levels of geometric thinking.  

All participants were informed of the ethical considerations applicable to the study. The study 

was planned and executed in a manner that would not cause harm to or threaten the lives of 

the participants. The university’s ethical clearance protocol was observed and permission to 

conduct the study at the participating schools was sought from and granted by the Free State 

provincial DBE. Participants were asked to sign consent forms and they agreed to be part of the 

study. Furthermore, they were made aware that they could withdraw from the research project 

any time they wished to.  

FINDINGS 

This section presents the data generated by the study. Analysis was done by, first, clustering 

learners’ errors and formulating the themes as presented in Tables 2 and 3. Each table focuses 

on a specific question and presents learners’ thinking during attempts to respond to questions 

relating to geometry content.  

Interlinked visual and analysis level of geometric thinking 

Table 2 presents a thematic analysis of learners’ errors on the question that assessed 

learners’ competence in completing the theorem statement exhibited by Table 2. A total of 50 

learners’ scripts were randomly selected for analysis (𝑛 = 50). A total of 37 scripts (𝑛1 = 37), 

which is 74% of learners, presented learners’ errors and/or misconceptions, whilst 𝑛2 = 13 

learners’ responses to the question were correct. The themes were formulated by grouping 

similar responses together and presenting the frequencies per error. Deciding whether 

responses or errors were similar was done after the learners’ main ideas had been considered.  

Theme 1 errors, which involved 62% of learners’ errors, relate to learners’ inability to identify 

the equality relationship between the angle at the centre of a circle and the angle at the 

circumference of the circle. There is evidence of partial understanding of the relationship 

between the angle subtended by the arc at the centre and the angle at the circumference. This 

argument is substantiated by the fact that these learners could identify the angle that is 
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subtended by the arc at the centre correctly, that is, “angle at the circumference”. In addition, 

reference to “equal to” means they used the correct mathematical operational relationship that 

exits between the two angles. However, what these learners seem to have missed is the 

proportional relationship between the two angles, which is, one is twice (double) the other, or 

one is half the other, in magnitude.  

Table 2 

Summary of learners’ errors on completing the theorem statement on determining the 

relationship between of the angle subtended by a chord or arc at the centre of a circle 

Question: The angle subtended by a chord or arc at the centre of a circle is … 

Total number of learners: n = 50 

Total number of errors: 𝑛1 = 37 

Total number of accurate responses: 𝑛2 = 13  

Theme 1: Angle at the circumference  

23 (62%) 
equal to the angle at the circumference 7 

equal to twice the angle at the circumference 11 

equal to twice circumference  5 

Theme 2: Angle at the centre 
8 (22%) 

twice the angle at the centre 8 

Theme 3: Equal to ninety degrees  

6 (16%) 

90 degrees 1 

Equal to 360 degrees 1 

Twice 360 degrees 3 

180 degrees 1 

 

Theme 2 presented with errors similar to those of the first theme; however, they differ 

in that these learners described the proportional relationship between the two angles by using 

the word “twice”. Despite their competence in recognising the proportional relationship 

between the two angles, they failed to make their statement completely valid by specifying 

which angle(s) at the circumference of a circle. For the third theme, learners were able to 

identify the proportional relationship that exists between the two angles; however, they 

referred to the same angle twice, that is, the angle at the centre.  

Van Hiele’s levels of geometric thinking are helpful for explaining learners’ thinking on 

the theorem statement in question. Stating the theorem in words and not pictorially could have 

posed a challenge for learners. In response to the question, learners had to apply the analysis 

level of geometric thinking to identify the properties, or as the CAPS (DBE, 2011) policy states, 

“parts of a circle”, such that the theorem statement is true. Furthermore, learners had to take 

a step further, beyond the analysis level of thinking, and apply the informal deduction level of 

geometric thinking to identify the relationship between the properties. Learners’ responses 

reported in Table 2 show that some of them operated at the analysis level of geometry thinking, 

because they could correctly identify certain properties of the theorem statement. 
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Furthermore, referring to literature, there is evidence of learners operating at informal 

deduction level; this happened when learners’ identification of the properties of a geometric 

concept was not limited to its pictorial representation. Even though learners where able to 

identify the properties of the theorem, operating at Level 2 could explain their errors, since most 

of them showed partial knowledge of sufficient properties that would make the statement true.  

Visualisation and analysis 

This section reports on the results reported in Table 3, which summarises learner errors on 

proving that PQRN is a cyclic quadrilateral, thematically. Data analysis of learners’ errors and/or 

misconceptions shows that, according to the sampled scripts that were analysed, no learners 

who operated at Level 3 and 4 were found to have made errors. The forgoing finding 

corroborates the findings of Alex and Mammen (2016), who found that learners who 

participated in their study could operate at Level 2, and no higher. Thus, the focus of the analysis 

is mainly on the first three levels.  

Table 3 

Summary of learners’ errors on proving that PQRN is a cyclic quadrilateral 

Total number of learners: n = 50 

Total number of errors: 𝑛1 = 31 

Total number of no responses: 𝑛3 = 6 

Total number of accurate responses: 𝑛2 = 13  

VISUALISATION (THEME 1)  
 
 
 
17 
(46%) 

𝑃̂  = 𝑅,̂  ∠′𝑠 on the same segment These errors were categorised under 
visualisation because learners based 
their argument or conclusions on 
recognition or visualisation, and not 
properties and/or logic  

7 

𝐿̂  = 𝐾,̂  ∠′𝑠 sub by the same arc 4 

𝑄̂  = ∠KNM, ∠′𝑠 sub by the same arc 5 

∠𝐾𝑁𝑃 = ∠𝐾𝐿𝑀, Ext ∠′s of 
quadrilateral are equal.  

2 

ANALYSIS (THEME 2) 

14(38%) 

𝑁̂  = 𝑄̂, Opposite ∠′𝑠 of a cyclic quad These errors were categorised under 
analysis because learners based their 
arguments or conclusions on 
properties  

5 

𝑃̂  = 𝑅̂, Opposite ∠′𝑠 of a cyclic quad 3 

𝑁̂  + 𝑄̂ = 180°, 4 sides, 2 sides are 
parallel  

3 

All angles in cyclic quad add up to 360°  1 

∠𝐾𝐿𝑀 = ∠𝐾𝑁𝑀, opposite side of 
parallelogram 

1 

PQ = NR, NQ = PR, therefore PQRN is 
cyclic quad 

1 

Visualisation 

Visualisation refers to geometric reasoning that is limited to the shape(s) or pictorial 

representation of a geometric concept (Luneta, 2015).  For instance, one of the errors under 

visualisation in Table 3 is that, when learners attempted to prove that PQRN is a cyclic quad, 

41% of them argued that 𝑃̂ = 𝑅̂, giving as reason that 𝑃̂ and 𝑅̂ are angles on the same segment 

KM. Similarly, 24% of the learners said that 𝐿̂  = 𝐾̂, because the two angles are subtended by 
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the same arc KM; and 29% of the learners said that 𝑄̂  = 𝑁,̂ for the same reason, namely, that 

the angles are subtended by the same arc KM. What is common in all these responses, given by 

94% of learners, is that they have a partial understanding, limited by visual reasoning of the 

theorem (angle subtended by chord, arc or segment are equal). They recognised that all three 

pairs of angles are subtended by a chord, arc or segment; however, visual reasoning made 

learners miss an important property, which is that all the angles must be on the circumference 

of the circle.  

There was considerable evidence of learners operating at visual reasoning level, which 

also explains a similar learner error, namely that ∠𝐾𝑁𝑃 = ∠𝐾𝐿𝑀, because the exterior angle is 

equal to the opposite interior angle of the quadrilateral. Visually, ∠𝐾𝑁𝑃 is the exterior opposite 

angle to interior ∠𝐾𝐿𝑀 of a quadrilateral KLMN; however, informal deductive reasoning was 

needed to make the statement true. This reasoning is that, even though they are exterior and 

interior angles visually, they will only be equal if, and only if, quadrilateral KLMN is a cyclic quad. 

Visual reasoning by learners could be the cause of errors in these themes. Abdullah and Zakaria 

(2013) would have us understand that learners at this level (visualisation) reach conclusions 

based on recognition of the geometric shape as seen from above.  

Figure 1 presents one of the learners’ answers. Thabo (pseudonym) is representative of 

many learners who gave similar responses. Figure 1 is a snapshot of how Thabo marked and 

labelled the geometric figure provided in the question about proving that PQRN is a cyclic 

quadrilateral.  

 

Figure 1 

Thabo’s response to the question: Prove that QPNR is a cyclic quadrilateral  

 

 
 

It is evident from Thabo’s response that he could operate, at least, at informal deduction 

level, as he made a substantiated claim that ∠𝐾𝑁𝑀 = ∠𝐾𝐿𝑀, with the reason drawn from the 
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properties of KLMN, namely, that opposite angles of a parallelogram are congruent. However, 

some of the errors made by learners such as Thabo show that they operate only at the analysis 

level of geometric thinking. For instance, Thabo’s solution, which offers one example of this 

erroneous thinking, gave evidence of a partial understanding of angles on the same segment or 

angles subtended by chord/arc KM. He claims that ∠𝐾𝑃𝑀 = ∠𝐾𝑅𝑀, giving the reason that 

these angles are on the same segment. However, what Thabo omitted in his geometric thinking, 

is to provide sufficient conditions for this statement to hold, which is that the angles must lie on 

the circumference of the circle.  

Analysis 

This theme relates mainly to learners being able to move beyond merely describing properties 

of geometric shapes visually. To respond to the question of proving that PQRN is a cyclic quad, 

the error most learners made was describing or listing one or more properties of a cyclic quad, 

instead of proving it. Table 3 presents evidence of learners’ knowledge of properties of a cyclic 

quad. Literature suggests that, if learners have knowledge of properties of geometric shapes, 

but cannot demonstrate how the properties are linked or related, then learners are operating 

at the analysis level of geometric thinking. This was evident in Table 3, which shows that learners 

only cited the properties of a cyclic quadrilateral. Figures 2 and 3 present learners’ general 

responses. 

 

Figure 2  

John’s response to the question: Prove that QPNR is a cyclic quadrilateral 

 
 

 

 

Figure 3  

Mpho’s response to the question: Prove that QPNR is a cyclic quadrilateral 

 
The responses in Figures 2 and 3 were clearly not slips but were errors. Instead of proving 

that PQRN is a cyclic quad, the learners cited its properties. Using Van Hiele’s theory of 

geometric thinking, we can infer that these learners were operating at analysis or description 
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level. Part of the reason for my inference concurs with Teppo (1991)’s contention that the 

reasoning about geometric figures of learners who operate at Level 1 is based on the properties 

of geometric shapes. Whilst there is evidence of partial understanding of what a cyclic quad is – 

as some of the cited properties in both Figures 2 and 3 were correct – learners’ reasoning seems 

to be limited to description level. From Figures 2 and 3, and in other learners’ responses, there 

is little or no evidence of learners making informal deductions and attempting to order the 

properties of acyclic quad logically to develop an argument that QPNR is indeed a cyclic quad. 

Even more importantly, they do not operate at deduction level either, as there is no evidence 

of learners presenting logically sufficient condition(s) or properties of a cyclic quad to prove that 

QPRN is a cyclic quad.  

DISCUSSIONS 

The aim of this paper was to analyse learners’ errors and misconception during their attempts 

to solve Euclidean geometry problems. The findings of this paper are, thus, focused on learners’ 

geometric thinking that leads to errors.  

An analysis of learner errors shows that learners can operate partially at the analysis level 

of Van Hiele’s theory of geometric reasoning, particularly when they must complete a theorem 

statement. This finding confirms the findings of Solaiman et al. (2017) who found that every 

learner in a sample of 406 learners operated at, at most, Level 2 of Van Hiele theory.  

In addition, the study revealed that many learners operate at the visualisation level of geometric 

thinking, which caused most of the errors. Most errors occurred because of learners reaching 

conclusions based of visual representation of a geometric concept, without considering 

sufficient properties for the geometry concept to be true. For Alex and Mammen (2016) part of 

the reason why learners perform far below expectation is that they have partial knowledge and 

skills of geometry. Thus, operating at visualisation level when questions require Level 3 

reasoning, means that learners have partial knowledge and skills for Euclidean geometry. This 

finding suggested an insight into the results of Ali et al. (2014) who found that learners in 

secondary schools in India performed below the average expectation on questions related to 

geometry. Part of their problem, as in the current study, is that most geometry questions require 

learners to operate mainly at Level 3, which is deductive reasoning. However, the current study 

found no evidence of learners making errors and operating at this level. Adolphus (2011) 

concurs, but suggests that part of the problem is partial understanding and/or acquisition of the 

foundational knowledge required, while the results of the current study confirm the findings of 

Ali et al. (2014)  and Adolphus (2011) this study goes further, and provides important specifics 

about the nature of the errors learners make in response to questions about the theorem, an 

angle subtended by arc at the centre is equal to twice the angle on the alternating segment 

subtended by the same arc. Learners stated the theorem partially, as they were generally unable 

to recognise the proportional relationships between the angles.  



101                                    
 

 
RESSAT 2023, 8(3): 89-104

Not only does the current study confirm learners’ weaknesses as captured in the 

literature, it also investigated learners’ responses to determine what learners do possess 

knowledge about. The study found that the majority of learners know that the angle subtended 

by the arc at the centre relates to the angle at the circumference, and that opposite angles of 

cyclic quad are supplementary – even learners operating at Levels 0, 1 and 2. The significance 

of this finding lies in its pedagogical value – this finding provides practitioners who participated 

in this study with information on content-specific errors, and on what learners know, which can 

be useful for suggesting corrective measures or developing teaching strategies (Gardee, 2015). 

Conclusion and Recommendations 

This study was limited to four schools, of which the participants formed a cluster of mathematics 

teachers. While the results of this study may be extended to other learners and teachers in 

similar contexts, it is important to generalise with caution, due to epistemological complexities. 

The findings of this study reveal that most learner errors are caused by their thinking being on 

Levels 0 and 1, while the questions require Level 3 thinking. Thus, when they teach geometry, 

teachers need to determine their learners’ level of geometric thinking and integrate it in their 

lesson preparations and material development. Furthermore, the paper recommends a follow-

up study with a larger sample or multiple case studies, which could capture the epistemological 

variations and complexities and inform pedagogical strategies and knowledge for teaching 

Euclidean geometry in more diverse educational contexts.  
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